ESSENTIAL SKILLS FOR PHYSICAL SCIENCE

PAPER 1: PHYSICS

MATRIC WORKSHOP

NAME: _____ SCHOOL: _____

Philanthropy Initiative with Employees of Allan Gray

Physics is a fundamental science that underpins the development of all other science, engineering and technology disciplines. Studying physics imparts transferable skills that are valuable in areas such as medicine, engineering, ICT, Big Data, astronomy, financial analysis and investment management, among others. The South African Institute of Physics (SAIP) aims "To improve physics education and research, develop and nurture an inclusive next generation of physicists for South Africa". If we increase the number of physicists in our country, then we will improve the social and economic status of our country as well as address the Global Sustainable Development Goals (SDGs) such as energy security, health for all, environmental protection and poverty alleviation. Do you know that "The Physics of Today is the Technology of Tomorrow": without physics there would be no electricity, internet, computer games, supermarket laser scanners, space rockets, light bulbs, digital cameras, cell phones, aeroplanes, solar panels, fibre optics, DVD players, computers, X-ray and CAT – Scan machines in hospitals.

They say that everyone is a genius because genius is 1% talent and 99% hard work. Physics is for everyone, just put in the effort you will see amazing results, and it will open a world of opportunities for your career. This is why the SAIP decided to support these matric workshops, with generous support from Allan Gray. We wish you all the best in your exam preparations: always review your understanding of physics topics through practising to solve problems. By so doing you are practising physics' core skill, "the art of solving problems" using various tools such as mathematics, graphs and

equations.

And remember: no matter how dark the night is, the sun will always shine again:- the COVID19 pandemic will pass!

Brian Masara. CEO: South African Institute of Physics

Follow us on SAIP Facebook, visit our website <u>www.saip.org.za</u>, email: <u>info@saip.org.za</u> for more study materials, support and opportunities related to studying physics and a career as a physicist!

Our main outreach activity over this time has been Matric Workshops. Started in 1994, they have run continuously since then and now technology (thanks to Physics!) is providing us with a way to keep them running and to reach pupils across the country.

To all matric pupils and teachers, as you approach your exams:- don't be scared – be prepared! This workshop and booklet offer you a unique tool to prepare for Physical Science Paper 1:- use them well!

Dr Derek Fish. Director: Unizulu Science Centre

Follow us on Unizulu Science Centre Facebook, visit our website <u>www.unizulusc.org</u>, email <u>info@unizulusc.org</u> for more information on the Science Centre or on studying at the University of Zululand.

TEOF

Pg. Len		ath	CONTENTS	Exam	Video			
		igin	JOHN LINE	Question	Number			
	INTRODUCTION							
1	3	Cov	ver and Contents Pages		1 1			
4	2 Paper 1 (Physics): Topics, Content and Skills				1.1			
	GRAPHS							
6	62Graphs: Introduction and Straight-line graphsVARIOUS1.2							
8	6	Mot	tion graphs: summary and experiment	3	2			
14	3	Mot	ion graphs: exam examples (Projectile Motion)	3	2			
17	3	The	Photo-electric effect: simulation, graphs & exams.	10	3			
20	6	Ohr	ms Law : experiment, graphs and exam examples	8	4.1			
26	5	Inte	rnal resistance: experiment, graphs and exams	8	4.2			
	1	1	FREE BODY DIAGRAMS					
31	6	Free	e Body Diagrams, Normal Force and exam examples.	2, 5, 7	5			
	1	1	EQUATIONS					
37	1	Solv	ving equations – introduction & PROGRESS method	ALL				
38	3	Dat	a Sheets, variables and constants	ALL	6.1			
41	1	Usir	ng the PROGRESS method - example	ALL				
42	6	Equations: Newton's 2 nd Law		2	6.2			
48	1	Equ	ations: Projectile Motion	3	6.3			
49	3	Equ	ations: Momentum	4	6.4			
52	3	Equ	ations: Work, Energy and Power	5	6.5			
55	3	Equ	ations: Doppler Effect	6	6.6			
58	4	Equ	ations: Electrostatics	7	6.7			
62	4	Equ	ations: Electrodynamics and Alternating Current	9	6.9			
	MULTIPLE CHOICE and RATIO QUESTIONS							
66	2	"Ra	tio" questions: introduction and exercise	1	7			
68	3	Multiple Choice "ratio" questions from previous exams		1				
71	2	UNI	ZULU SCIENCE AND ENGINEERING					

PAPER 1 (PHYSICS): TOPICS AND CONTENT

Торіс	Content (items involving GRAPHS are <u>underlined</u>)					
	Grade 10	Introduction to vectors & scalars; Motion in one dimension (reference frame, position, displacement and distance, average speed, average velocity, acceleration, instantaneous velocity, instantaneous speed, <u>description of motion in words</u> , <u>diagrams</u> , <u>graphs and equations</u> .) Energy (gravitational potential energy, kinetic energy, mechanical energy, conservation of mechanical energy (in the absence of dissipative forces)) 30 hours Prescribed experiment: Velocity-time graphs and acceleration Recommended experiment: Position-time graphs				
Mechanics	Grade 11	Vectors in two dimensions (resultant of perpendicular vectors, resolution of a vector into its parallel and perpendicular components), Newton's Laws and Application of Newton's Laws (Newton's first, second and third laws and Newton's law of universal gravitation, different kinds of forces: weight, normal force, frictional force, applied (push, pull), tensio (strings or cables), force diagrams, free body diagrams & application of Newton's laws (equilibrium and nonequilibrium)) 27 h Prescribed experiment: Newton's Second Law: Acceleration-Force (and AccelMas				
	Grade 12	Momentum and Impulse (momentum, Newton's second law expressed in terms of momentum, conservation of momentum and elastic and inelastic collisions, Impulse), Vertical projectile motion in one dimension (1D) (vertical projectile motion represented in words, diagrams, equations and graphs), Work, Energy & Power (work , work-energy theorem, conservation of energy with non-conservative forces present, power) 28 hours Prescribed experiment: Conservation of Linear Momentum (X) Recommended experiment: Position-time and velocity-time graphs for freefall				
Waves, Sound & Light	Grade 10	Transverse pulses on a string or spring (pulse, amplitude superposition of pulses), Transverse waves (wavelength, frequency, amplitude, period, wave speed, Longitudinal waves (on a spring, wavelength, frequency, amplitude, period, wave speed, sound waves), <u>Sound (pitch, loudness, quality (tone), ultrasound), Electromagnetic radiation</u> (dual (particle/ wave) nature of electromagnetic (EM) radiation, nature of EM radiation, <u>EM</u> <u>spectrum</u> , nature of EM as particle - energy of a photon related to frequency and wavelength) 16 hours Experiment: Demonstration of Sound (pitch, loudness, quality (tone), ultrasound				
	Grade	Geometrical Optics (Refraction, Snell's Law, Critical angles and total internal reflection),				
	11	2D & 3D Wave fronts (Diffraction) 13 hours				
	Grade 12	Doppler Effect (either moving source or moving observer) (with sound and ultrasound, with light - red shifts in the universe.) 6 hours				
Electricity &	Grade 10	Magnetism (magnetic field of permanent magnets, poles of permanent magnets, attraction and repulsion, magnetic field lines, earth's magnetic field, compass), Electrostatics (two kinds of charge, force exerted by charges on each other (descriptive), attraction between charged and uncharged objects (polarisation), charge conservation, charge quantization),Electric circuits (emf, potential difference (pd), current, measurement of voltage (pd) and current, resistance, resistors in parallel)14 h Prescribed experiment: PD and current in series and parallel circuits ()				
Magnetism	Grade 11	Electrostatics (Coulomb's Law, Electric field), Electromagnetism (Magnetic field associated with current-carrying wires, Faraday's Law), Electric circuits (Energy, Power) 20 hours Recommended experiment: Ohm's law: PD and current for resistor and bulb				
	Grade 12	Electric circuits (internal resistance and series-parallel networks), Electrodynamics (electrical machines (generators, motors), <u>alternating current</u>) 12h Prescribed experiment: Internal Resistance of a battery. Current and PD Experiment: Compare PD graphs for alternating and direct current				
Matter & Materials	Grade 12 only	Optical phenomena and properties of materials (photo-electric effect, emission and absorption spectra) (6 hours for physics) Experiment (simulation):Kinetic energy-frequency graph for Photo-Electric Effect				

SKILLS AND COGNITIVE LEVELS: PHYSICAL SCIENCE (FROM CAPS CURRICULUM GUIDE)

	Selected Examinable Topics from Grades 10 & 11						
Physics from grade 11			Chemistry from grades 10 and 11				
1.	Newton's Laws (Newton 1, 2, 3 and Newton's Law of Universal Gravitation) and Application of Newton's Laws.	1. 2. 3.	Representing chemical change (grade 10) Intermolecular forces (grade 11) Stoichiometry (grade 11)				
2. 3.	Electrostatics (Coulomb's Law and Electric field) Electric circuits (Ohm's Law, Power and Energy)	4.	Energy and Change (grade 11)				

Grade 12 Exam									
			<u>۔</u>	Duration (hours)	Weighting Of Questions Across Cognitive Levels				
		Marks	be		Level 1	Level 2	Level 3	Level 4	
Paper	Content		Total Marks/Pa		Recall	Understand	Analyse, Apply	Create, Evaluate	
	Mechanics	63			15%	15% 35% 40	40%	10%	
(0	Waves, Sound & Light	17	150	3					
er 1: 'SICS	Electricity & Magnetism	55	150	5	1070		4070		
Pap FOC	Matter & Materials	15							
2	Chemical Change	84							
Paper 2: CHEMISTF FOCUS	-2: AISTF	Chemical Systems	18	150	3	15%	40%	35%	10%
	Matter & Materials	48							

SKILLS FOR PHYSICAL SCIENCE (FROM CAPS CURRICULUM GUIDE)

NO.	SKILL	EXAMPLE / DETAIL			
1	Models in Science	E.g. Atomic Model, Periodic Table, Bonding Models			
2	Scientific Notation	E.g. 0.0065 m = 6.5 x 10 ⁻³ m			
3	Conversion of Units	E.g. 7 mm = 0.007 m; metric prefixes (milli, kilo, mega etc.)			
4	Changing the subject of a formula	E.g. $V = I.R$ so $I = V / R$			
5	Basic Trigonometry Skills	Define sin, cos and tan of an angle and use in calculations			
6	Fractions and Ratios	E.g. Water molecule is $\frac{1}{3}$ O and $\frac{2}{3}$ H atoms. Ratio of O : H is 1 : 2			
7	What is rate - applications	E.g. (Physics) power = rate of doing work; (Chemistry) Reaction Rate			
8	Direct and Inverse Proportions	E.g. Acceleration is directly prop. to force, inversely prop. to mass.			
9	Constants in Equations (use & meaning)	E.g. Constants like G for gravitation, K for Coulomb's Law etc.			
	Practical Investigation Skills (including safety skills)	 Observation, precautions, writing hypothesis & conclusions a) Data collection & handling, tables (see detail below) b) General types of graphs, analysis, c) Identifying variables, 			
10	a) Data collection & handling, tables	Collect data and export into the appropriate form of data presentation (e.g. equation, table, graph, or diagram).			
	b) General types of graphs, analysis	Analyse information in a table, graph or diagram (e.g. compute the mean of a series of values or determine the slope of a line).			
c) Identifying variables		Independent, dependent & control variable			

GRAPHS

1) What is a graph?

Graphs show: a) **RATE** at which things happen (e.g. position vs time graph shows RATE of change of position:- or velocity, as $v = \Delta x / \Delta t$)

b) **RELATIONSHIP** between variables (eg pressure vs volume graph shows RELATIONSHIP between P and V: that pressure is inversely proportional to volume)

c) **REPRESENTATION** of the data – visually, so it is easy to see relationships and trends. (Common in Life Science)

A GRAPH is **NOT** a PHOTOGRAPH. It is **NOT** a picture of the landscape, hills and valleys etc!

2) What graph skills are expected of you in exams?

- 1. To be able to analyse and explain trends in a given *sketch*-graph.
- 2. To be able to read values, gradient & intercept from a given accurate graph.
- 3. To be able to draw a *sketch* graph of a given situation.
- 4. To be able to plot an *accurate* graph on graph-paper provided.

3) Types of graphs:

- Straight-line y = mx + c v_f = at + v_i (eg velocity-time)
- $y = ax^{2} + bx + c$ $\Delta x = (\frac{1}{2}a)t^{2} + v_{i}t$ Parabola (eg position-time with acceleration) P = k / VHyperbola y = k / x(eg pressure-volume) Inverse square $y = k/x^2$ $F = k / r^2$ (eg force-distance with gravitation) Sine $V = V_0 \sin \omega t$ (eq voltage-time for alt. current) v = sin x $I = I_0 e^{-t/RC}$ $v = e^{x}$ Exponential (eg current-time for a charging capacitor) Circle, ellipse, cubic Not commonly used in science experiments
- 4) How to go about drawing a graph: (T.A.L.S.I.P.P !)
 - a) T choose an appropriate **TITLE**
 - b) A select variables to go on the AXES. Dependant (Y) and independent (X)
 - c) L LABELS for axes, with Units
 - d) S Choose a **SCALE** which allows the graph to fill as much of the page as possible.
 - e) I INTERVALS: Use the scale to determine how much each small block equals
 - f) P PLOT your data from the table onto the graph carefully checking the order (X & Y)
 - g) P **PLOT** the best fit line (or curve) for the data points. Calculate **intercept** and **gradient**.

Worked examples involving all these steps will be done with experiments.

STRAIGHT LINE GRAPHS: GRADIENT AND INTERCEPT

From Maths: the equation for a

straight line graph is in the form:

This contains two variables, and two constants as follows:

	VARIABLES	CONSTANTS		
у	The DEPENDENT variable, on the <u>vertical</u> axis This quantity DEPENDS on the other one. It is a result of the other one and we cannot set it.	m	The <u>gradient</u> or slope of the graph. The vertical change/ horizontal change Rise up / Run across	
x	The INDEPENDENT variable on the <u>horizontal</u> axis We can adjust this quantity as we like.	С	The <u>y-intercept</u> . Where the graph cuts the y-axis (when x = 0)	

Graphs with no X-intercept (m = 0)

In this case y is constant and not affected by x in any way, so the quantities are not related. Gradient m = 0. E.g. v is constant and not related to t when a = 0

Graphs with Y-intercept, (c) = 0

usually only positive)

We can also calculate the gradient from two points on the graph:

 $m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{rise \, up}{run \, across}$

Using the points 1 & 2 on the graph:

- Point 1 is: (0; 2) (the y-intercept)

So: $m = \frac{(8-2)}{(4-0)} = \frac{6}{4} = \frac{3}{2}$

Graphs in Physics are usually only in

the first quadrant (as quantities are

- Point 2 is: (4; 8)

In this case y directly proportional to x and the y-intercept: c = 0E.g. Velocity (v_i) is directly proportional to t when $v_i = 0$

MOTION GRAPHS 1: POSITION-TIME

POSITION-TIME GRAPHS:

- Flat line = stopped or stationary
- Sloping up = constant speed away from the start
 - \circ The steeper (up) the gradient, the faster the speed
- Sloping down = constant speed back *towards* the start
 - o The steeper (down) the gradient, the faster the speed
- Curved line = changing speed = accelerating
 - Curve up = speeding up (accelerating)
 - Curve down = slowing down (decelerating)
- Two lines with equal gradients show equal speeds
- The object is at the starting point when the graph is at zero position (on the x-axis)

Graph Quadratics

GRAPH OF POSITION vs. TIME

MOTION GRAPHS 2: VELOCITY-TIME

VELOCITY-TIME GRAPHS:

- Flat line = constant velocity (zero acceleration) $(V_2 V_1 = 0)$
- Sloping up = constant acceleration (positive), increasing speed
 - The steeper (up) the gradient, the greater the acceleration
- Sloping down = constant deceleration (negative), decreasing speed
 - \circ The steeper (down) the gradient, the greater the deceleration
- Curved line = changing acceleration [NOT COVERED IN SCHOOL SCIENCE!]
- Two lines with equal gradients show equal accelerations
- The object is *stationary* when the graph is at zero velocity (on the x-axis)

GRAPH OF VELOCITY vs. TIME

VERBAL DESCRIPTION OF THE MOTION:

- A) A car starts from rest and speeds up <u>away</u> from home for 4 s.
- B) The car travels at a constant speed of $4 \text{m} \cdot \text{s}^{-1}$ for 4 s <u>away</u> from home.
- C) The car (still traveling away) slows down at a constant rate for 4 s until it stops
- D) The car immediately starts from rest and speeds up towards home for 4 s.
- E) The car travels at a constant speed of $4m \cdot s^{-1}$ for 4 s towards home.
- F) The car (still traveling towards) slows down at a constant rate for 4 s until it stops at home.

EXERCISE: TRY TO DRAW SKETCH GRAPHS FOR THE FOLLOWING:

MOTION GRAPHS: EXAM EXAMPLE (NOV 2018)

QUESTION 3

In a competition, participants must attempt to throw a ball vertically upwards past point T, marked on a tall vertical pole. Point T is 3.7 m above the ground. Point T may, or may not, be the highest point during the motion of the ball.

One participant throws the ball vertically upwards at a velocity of 7.5 m \cdot s⁻¹ from a point that is 1.6 m above the ground, as shown in the diagram below. Ignore the effects of air resistance.

QUESTION 3

Stone **A** is thrown vertically upwards with a speed of 10 m·s⁻¹ from the edge of the roof of a 40 m high building, as shown in the diagram below. Ignore the effects of air friction.

Take the ground as reference.

- 3.1 Define the term free fall. (2)
- 3.2 Calculate the maximum HEIGHT ABOVE THE GROUND reached by stone A. (4)
- 3.3 Write down the magnitude and direction of the acceleration of stone A at this maximum height. (2)

Stone B is dropped from rest from the edge of the roof, x seconds after stone A was thrown upwards.

3.4 Stone A passes stone B when the two stones are29,74 m above the ground. Calculate the value of x.(6)

[18]

3.5 The graphs of position versus time for part of the motion of both stones are shown below.

Which of labels a to h on the graphs shown represents EACH of the following?

- 3.5.1 The time at which stone **A** had positive velocity? (1)
- 3.5.2 The maximum height reached by stone A? (1)
- 3.5.3 The time when stone **B** was dropped? (1)
- 3.5.4 The height at which the stones pass each other? (1)

QUESTION 3

A small ball is dropped from a height of 2 m and bounces a few times after landing on a cement floor. Ignore air friction.

The position-time graph below, not drawn to scale, represents the motion of the ball.

THE PHOTO-ELECTRIC EFFECT: SIMULATION

Albert Einstein received the Nobel Prize in Physics in 1921 for the photoelectric effect. He showed that light of sufficiently high energy could actually cause electrons to be emitted from a metal plate (like zinc) according to the equation:

> $\mathsf{E}_{\mathsf{k}(\mathsf{max})} = \mathsf{h}(f - f_0)$ $\mathbf{E}_{k(\max)} = \mathbf{h} \mathbf{f} - \mathbf{W}_0$ OR

- $E_{k(max)}$ = Max.Kinetic energy of electrons in J h = Planck's Constant = 6.63 x 10⁻³⁴ J·s
- f = Frequency of incident light in Hz W₀ = Work function of the metal in J
 - f_{o} = Threshold frequency of the metal, where $W_{0} = hf_{o}$

E____k(max)

Slope m = h