ESSENTIAL SKILLS FOR
PHYSICAL SCIENCE
PAPER 1: PHYSICS
MATRIC WORKSHOP

NAME:

SCHOOL:

Philanthropy Initiative with Employees of Allan Gray

Physics is a fundamental science that underpins the development of all other science, engineering and technology disciplines. Studying physics imparts transferable skills that are valuable in areas such as medicine, engineering, ICT, Big Data, astronomy, financial analysis and investment management, among others. The South African Institute of Physics (SAIP) aims "To improve physics education and research, develop and nurture an inclusive next generation of physicists for South Africa". If we increase the number of physicists in our country, then we will improve the social and economic status of our country as well as address the Global Sustainable Development Goals (SDGs) such as energy security, health for all, environmental protection and poverty alleviation. Do you know that "The Physics of Today is the Technology of Tomorrow": without physics there would be no electricity, internet, computer games, supermarket laser scanners, space rockets, light bulbs, digital cameras, cell phones, aeroplanes, solar panels, fibre optics, DVD players, computers, X-ray and CAT - Scan machines in hospitals.

They say that everyone is a genius because genius is 1% talent and 99% hard work. Physics is for everyone, just put in the effort you will see amazing results, and it will open a world of opportunities for your career. This is why the SAIP decided to support these matric workshops, with generous support from Allan Gray. We wish you all the best in your exam preparations: always review your understanding of physics topics through practising to solve problems. By so doing you are practising physics' core skill, "the art of solving problems" using various tools such as mathematics, graphs and equations.

And remember: no matter how dark the night is, the sun will always shine again:- the COVID19 pandemic will pass!

Brian Masara. CEO: South African Institute of Physics

Follow us on SAIP Facebook, visit our website www.saip.org.za, email: info@saip.org.za for more study materials, support and opportunities related to studying physics and a career as a physicist!

Established in 1960, the University of Zululand recently celebrated its $60^{\text {th }}$ birthday! For more than half that time, Unizulu Science Centre has helped thousands of teachers and pupils in schools surrounding the University. The University has taken Community Engagement seriously, by underwriting the operations of South Africa's premier Science Centre, which has grown from strength to strength in that time. Starting out in a 200 square metre room in 1986, with one staff member seeing 3000 pupils per year, it now boasts 2 500 square metres, 15 staff members and sees 30000 pupils through the centre (when COVID allows!) and many more in outreach activities.

Our main outreach activity over this time has been Matric Workshops. Started in 1994, they have run continuously since then and now technology (thanks to Physics!) is providing us with a way to keep them running and to reach pupils across the country.

To all matric pupils and teachers, as you approach your exams:- don't be scared - be prepared! This workshop and booklet offer you a unique tool to prepare for Physical Science Paper 1:- use them well!

Dr Derek Fish. Director: Unizulu Science Centre

Follow us on Unizulu Science Centre Facebook, visit our website www.unizulusc.org, email info@unizulusc.org for more information on the Science Centre or on studying at the University of Zululand.

Pg.	Length		CONTENTS	Exam Question	Video Number
INTRODUCTION					
1	3	Cover and Contents Pages			1.1
4	2	Paper 1 (Physics): Topics, Content and Skills		ALL	
GRAPHS					
6	2	Graphs: Introduction and Straight-line graphs		VARIOUS	1.2
8	6	Motion graphs: summary and experiment		3	2
14	3	Motion graphs: exam examples (Projectile Motion)		3	
17	3	The Photo-electric effect: simulation, graphs \& exams.		10	3
20	6	Ohms Law: experiment, graphs and exam examples		8	4.1
26	5	Internal resistance: experiment, graphs and exams		8	4.2
FREE BODY DIAGRAMS					
31	6	Free Body Diagrams, Normal Force and exam examples.		2, 5, 7	5
EQUATIONS					
37	1	Solving equations - introduction \& PROGRESS method		ALL	6.1
38	3	Data Sheets, variables and constants		ALL	
41	1	Using the PROGRESS method - example		ALL	
42	6	Equations: Newton's $\mathbf{2}^{\text {nd }}$ Law		2	6.2
48	1	Equations: Projectile Motion		3	6.3
49	3	Equations: Momentum		4	6.4
52	3	Equations: Work, Energy and Power		5	6.5
55	3	Equations: Doppler Effect		6	6.6
58	4	Equations: Electrostatics		7	6.7
62	4	Equations: Electrodynamics and Alternating Current		9	6.9
MULTIPLE CHOICE and RATIO QUESTIONS					
66	2	"Ratio" questions: introduction and exercise		1	7
68	3	Multiple Choice "ratio" questions from previous exams		1	
71	2	UNIZULU SCIENCE AND ENGINEERING			

PAPER 1 (PHYSICS): TOPICS AND CONTENT

Topic	Content (items involving GRAPHS are underlined)	
Mechanics	Grade 10	Introduction to vectors \& scalars; Motion in one dimension (reference frame, position, displacement and distance, average speed, average velocity, acceleration, instantaneous velocity, instantaneous speed, description of motion in words, diagrams, graphs and equations.) Energy (gravitational potential energy, kinetic energy, mechanical energy, conservation of mechanical energy (in the absence of dissipative forces)) $\mathbf{3 0}$ hours Prescribed experiment: Velocity-time graphs and acceleration Recommended experiment: Position-time graphs
	Grade 11	Vectors in two dimensions (resultant of perpendicular vectors, resolution of a vector into its parallel and perpendicular components), Newton's Laws and Application of Newton's Laws (Newton's first, second and third laws and Newton's law of universal gravitation, different kinds of forces: weight, normal force, frictional force, applied (push, pull), tension (strings or cables), force diagrams, free body diagrams \& application of Newton's laws (equilibrium and nonequilibrium)) 27 h Prescribed experiment: Newton's Second Law: Acceleration-Force (and Accel.-Mass)
	Grade 12	Momentum and Impulse (momentum, Newton's second law expressed in terms of momentum, conservation of momentum and elastic and inelastic collisions, Impulse), Vertical projectile motion in one dimension (1D) (vertical projectile motion represented in words, diagrams, equations and graphs), Work, Energy \& Power (work , work-energy theorem, conservation of energy with non-conservative forces present, power) $\mathbf{2 8}$ hours Prescribed experiment: Conservation of Linear Momentum (X) Recommended experiment: Position-time and velocity-time graphs for freefall
Waves, Sound \& Light	Grade 10	Transverse pulses on a string or spring (pulse, amplitude superposition of pulses), Transverse waves (wavelength, frequency, amplitude, period, wave speed, Longitudinal waves (on a spring, wavelength, frequency, amplitude, period, wave speed, sound waves), Sound (pitch, loudness, quality (tone), ultrasound), Electromagnetic radiation (dual (particle/ wave) nature of electromagnetic (EM) radiation, nature of EM radiation, EM spectrum, nature of EM as particle - energy of a photon related to frequency and wavelength) 16 hours Experiment: Demonstration of Sound (pitch, loudness, quality (tone), ultrasound
	Grade 11	Geometrical Optics (Refraction, Snell's Law, Critical angles and total internal reflection), 2D \& 3D Wave fronts (Diffraction) 13 hours
	Grade 12	Doppler Effect (either moving source or moving observer) (with sound and ultrasound, with light - red shifts in the universe.) 6 hours
Electricity \& Magnetism	Grade 10	Magnetism (magnetic field of permanent magnets, poles of permanent magnets, attraction and repulsion, magnetic field lines, earth's magnetic field, compass), Electrostatics (two kinds of charge, force exerted by charges on each other (descriptive), attraction between charged and uncharged objects (polarisation), charge conservation, charge quantization),Electric circuits (emf, potential difference (pd), current, measurement of voltage (pd) and current, resistance, resistors in parallel) 14 h Prescribed experiment: PD and current in series and parallel circuits (X)
	Grade 11	Electrostatics (Coulomb's Law, Electric field), Electromagnetism (Magnetic field associated with current-carrying wires, Faraday's Law), Electric circuits (Energy, Power) 20 hours Recommended experiment: Ohm's law: PD and current for resistor and bulb
	Grade 12	Electric circuits (internal resistance and series-parallel networks), Electrodynamics (electrical machines (generators,motors), alternating current) 12h Prescribed experiment: Internal Resistance of a battery. Current and PD Experiment: Compare PD graphs for alternating and direct current
Matter \& Materials	Grade 12 only	Optical phenomena and properties of materials (photo-electric effect, emission and absorption spectra) (6 hours for physics) Experiment (simulation):Kinetic energy-frequency graph for Photo-Electric Effect

SKILLS AND COGNITIVE LEVELS: PHYSICAL SCIENCE (FROM CAPS CURRICULUM GUIDE)

Selected Examinable Topics from Grades 10 \& 11 Physics from grade 11
 Chemistry from grades 10 and 11

1. Newton's Laws (Newton 1, 2, 3 and Newton's Law of Universal Gravitation) and Application of Newton's Laws.
2. Electrostatics (Coulomb's Law and Electric field)
3. Electric circuits (Ohm's Law, Power and Energy)
4. Representing chemical change (grade 10)
5. Intermolecular forces (grade 11)
6. Stoichiometry (grade 11)
7. Energy and Change (grade 11)

Grade 12 Exam								
Paper	Content	$\begin{aligned} & \frac{0}{2} \\ & \stackrel{1}{\pi} \\ & \sum \end{aligned}$			Weighting Of Questions Across Cognitive Levels			
					Level 1	Level 2	Level 3	Level 4
					Recall	Understand	Analyse, Apply	Create, Evaluate
	Mechanics	63	150	3	15\%	35\%	40\%	10\%
	Waves, Sound \& Light	17						
	Electricity \& Magnetism	55						
	Matter \& Materials	15						
	Chemical Change	84	150	3	15\%	40\%	35\%	10\%
	Chemical Systems	18						
	Matter \& Materials	48						

SKILLS FOR PHYSICAL SCIENCE (FROM CAPS CURRICULUM GUIDE)

NO.	SKILL	EXAMPLE / DETAIL
1	Models in Science	E.g. Atomic Model, Periodic Table, Bonding Models
2	Scientific Notation	E.g. $0.0065 \mathrm{~m}=6.5 \times 10^{-3} \mathrm{~m}$
3	Conversion of Units	E.g. $7 \mathrm{~mm}=0.007 \mathrm{~m} ;$ metric prefixes (milli, kilo, mega etc.)
4	Changing the subject of a formula	E.g. V $=$ I.R so I $=\mathrm{V} / \mathrm{R}$
5	Basic Trigonometry Skills	Define sin, cos and tan of an angle and use in calculations
6	Fractions and Ratios	E.g. Water molecule is $1 / 3 \mathrm{O}$ and $2 / 3 \mathrm{H}$ atoms. Ratio of O : H is $1: 2$
7	What is rate - applications	E.g. (Physics) power = rate of doing work; (Chemistry) Reaction Rate
8	Direct and Inverse Proportions	E.g. Acceleration is directly prop. to force, inversely prop. to mass.
9	Constants in Equations (use \& meaning)	E.g. Constants like G for gravitation, K for Coulomb's Law etc.
	Practical Investigation Skills (including safety skills)	Observation, precautions, writing hypothesis \& conclusions a) Data collection \& handling, tables (see detail below) b) General types of graphs, analysis, c) Identifying variables,
	a) Data collection \& handling, tables	Collect data and export into the appropriate form of data presentation (e.g. equation, table, graph, or diagram).
	b) General types of graphs, analysis	Analyse information in a table, graph or diagram (e.g. compute the mean of a series of values or determine the slope of a line).
	c) Identifying variables	Independent, dependent \& control variable

GRAPHS

1) What is a graph?

Graphs show: a) RATE at which things happen (e.g. position vs time graph shows RATE of change of position:- or velocity, as $v=\Delta x / \Delta t$)
b) RELATIONSHIP between variables (eg pressure vs volume graph shows RELATIONSHIP between P and V : that pressure is inversely proportional to volume)
c) REPRESENTATION of the data - visually, so it is easy to see relationships and trends. (Common in Life Science)

A GRAPH is NOT a PHOTOGRAPH. It is NOT a picture of the landscape, hills and valleys etc!

2) What graph skills are expected of you in exams?

1. To be able to analyse and explain trends in a given sketch-graph.
2. To be able to read values, gradient \& intercept from a given accurate graph.
3. To be able to draw a sketch graph of a given situation.
4. To be able to plot an accurate graph on graph-paper provided.

3) Types of graphs:

- Straight-line $y=m x+c \quad v_{f}=a t+v_{i} \quad$ (eg velocity-time)
- Parabola $y=a x^{2}+b x+c \quad \Delta x=(1 / 2 a) t^{2}+v_{i} t \quad$ (eg position-time with acceleration)
- Hyperbola $y=k / x \quad P=k / V \quad$ (eg pressure-volume)
- Inverse square $y=k / x^{2} \quad F=k / r^{2} \quad$ (eg force-distance with gravitation)
- Sine $\quad y=\sin x \quad V=V_{0} \sin \omega ́ t$ (eg voltage-time for alt. current)
- Exponential $y=e^{x} \quad \mathrm{I}=\mathrm{I}_{0} \mathrm{e}^{-t R C} \quad$ (eg current-time for a charging capacitor)
- Circle, ellipse, cubic Not commonly used in science experiments

4) How to go about drawing a graph: (T.A.L.S.I.P.P !)

a) T - choose an appropriate TITLE
b) A - select variables to go on the AXES. Dependant (Y) and independent (X)
c) L - LABELS for axes, with Units
d) S - Choose a SCALE which allows the graph to fill as much of the page as possible.
e) I - INTERVALS: Use the scale to determine how much each small block equals
f) P - PLOT your data from the table onto the graph carefully checking the order (X \& Y)
g) P - PLOT the best fit line (or curve) for the data points. Calculate intercept and gradient.

Worked examples involving all these steps will be done with experiments.

STRAIGHT LINE GRAPHS: GRADIENT AND INTERCEPT

From Maths: the equation for a straight line graph is in the form:

```
y=mx+c
```

This contains two variables, and two constants as follows:

VARIABLES		CONSTANTS	
\mathbf{y}	The DEPENDENT variable, on the vertical axis This quantity DEPENDS on the other one. It is a result of the other one and we cannot set it.	\mathbf{m}	The gradient or slope of the graph. The vertical change/ horizontal change Rise up / Run across
\mathbf{x}	The INDEPENDENT variable on the horizontal axis We can adjust this quantity as we like.	\mathbf{c}	The y-intercept. Where the graph cuts the y-axis (when $x=0)$

We can also calculate the gradient from two points on the graph:

$$
\mathrm{m}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{\text { rise up }}{\text { run across }}
$$

Using the points $1 \& 2$ on the graph:

- Point 1 is: $(0 ; 2)$ (the y-intercept)
- Point 2 is: $(4 ; 8)$

So: $m=\frac{(8-2)}{(4-0)}=\frac{6}{4}=\frac{3}{2}$
Graphs in Physics are usually only in the first quadrant (as quantities are usually only positive)

Graphs with no X-intercept ($\mathrm{m}=0$)

In this case y is constant and not affected by x in any way, so the quantities are not related. Gradient $\mathrm{m}=0$. E.g. v is constant and not related to t when $a=0$

Graphs with Y-intercept, (c) $=0$

$$
y=3 x=3 x+0
$$

The value of c gives us the y-intercept: $c=0$ m is the gradient slope which is the:
Rise UP / Run ACROSS $\mathrm{m}=\mathbf{3 / 1}=\mathbf{3}$
From the y-intercept (0) go UP 3 blocks and ACROSS 1. Connect the two dots with the graph line.

MOTION GRAPHS 1: POSITION-TIME

POSITION-TIME GRAPHS:

- Flat line = stopped or stationary
- Sloping up = constant speed away from the start
- The steeper (up) the gradient, the faster the speed
- Sloping down = constant speed back towards the start
- The steeper (down) the gradient, the faster the speed
- Curved line = changing speed = accelerating
- Curve up = speeding up (accelerating)
- Curve down = slowing down (decelerating)
- Two lines with equal gradients show equal speeds
- The object is at the starting point when the graph is at zero position (on the x -axis)

GRAPH OF POSITION vs. TIME

MOTION GRAPHS 2: VELOCITY-TIME

VELOCITY-TIME GRAPHS:

- Flat line $=$ constant velocity (zero acceleration) $\left(\mathrm{V}_{2}-\mathrm{V}_{1}=0\right)$
- Sloping up = constant acceleration (positive), increasing speed
- The steeper (up) the gradient, the greater the acceleration
- Sloping down = constant deceleration (negative), decreasing speed
- The steeper (down) the gradient, the greater the deceleration
- Curved line $=$ changing acceleration [NOT COVERED IN SCHOOL SCIENCE!]
- Two lines with equal gradients show equal accelerations
- The object is stationary when the graph is at zero velocity (on the x-axis)

GRAPH OF VELOCITY vs. TIME

TIME (s)

學
Reproduction and distribution of this material without written consent is prohibited.

ACCELERATION (a)	NOTES
$\underbrace{\text { a }}$	ZERO ACCELERATION A car travels forwards at constant velocity Newton's First Law
	POSITIVE ACCELERATION A car speeds up while travelling forwards Newton's Second Law
	NEGATIVE ACCELERATION A car slows down (brakes) while travelling forwards Newton's Second Law

GRAPHS OF MOTION

VERBAL DESCRIPTION OF THE MOTION:

A) A car starts from rest and speeds up away from home for 4 s .
B) The car travels at a constant speed of $4 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ for 4 s away from home.
C) The car (still traveling away) slows down at a constant rate for 4 s until it stops
D) The car immediately starts from rest and speeds up towards home for 4 s .
E) The car travels at a constant speed of $4 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ for 4 s towards home.
F) The car (still traveling towards) slows down at a constant rate for 4 s until it stops at home.

EXERCISE: TRY TO DRAW SKETCH GRAPHS FOR THE FOLLOWING:

MOTION GRAPHS: EXAM EXAMPLE (NOV 2018)

QUESTION 3

In a competition, participants must attempt to throw a ball vertically upwards past point T , marked on a tall vertical pole. Point T is 3.7 m above the ground. Point T may, or may not, be the highest point during the motion of the ball.

One participant throws the ball vertically upwards at a velocity of $7.5 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ from a point that is 1.6 m above the ground, as shown in the diagram below. Ignore the effects of air resistance.

Projectile
Motion
3.1 In which direction is the net force acting on the ball while it moves towards point T ? Choose from: UPWARDS or DOWNWARDS. Give a reason for the answer.
3.2 Calculate the time taken by the ball to reach its highest point.
3.3 Determine, by means of a calculation, whether the ball will pass point T or not.
3.4 Draw a velocity-time graph for the motion of the ball from the instant it is thrown upwards until it reaches its highest point

Indicate the following on your graph:

- The initial and final velocity
- Time taken to reach the highest point

MOTION GRAPHS: EXAM EXAMPLE (NOV 2019)

QUESTION 3

Stone \mathbf{A} is thrown vertically upwards with a speed of $10 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ from the edge of the roof of a 40 m high building, as shown in the diagram below.
Ignore the effects of air friction.
Take the ground as reference.
3.1 Define the term free fall. (2)
3.2 Calculate the maximum HEIGHT ABOVE THE GROUND reached by stone A. (4)
3.3 Write down the magnitude and direction of the acceleration of stone A at this maximum height. (2)
Stone B is dropped from rest from the edge of the roof, x seconds after stone A was thrown upwards.
3.4 Stone A passes stone B when the two stones are $29,74 \mathrm{~m}$ above the ground. Calculate the value of x . (6)

3.5 The graphs of position versus time for part of the motion of both stones are shown below.

Which of labels a to \mathbf{h} on the graphs shown represents EACH of the following?
3.5.1 The time at which stone \mathbf{A} had positive velocity?
3.5.2 The maximum height reached by stone \mathbf{A} ? (1)
3.5.3 The time when stone B was dropped?
3.5.4 The height at which the stones pass each other? (1)

MOTION GRAPHS: EXAM EXAMPLE (NOV 2020)

QUESTION 3

A small ball is dropped from a height of 2 m and bounces a few times after landing on a cement floor. Ignore air friction.

The position-time graph below, not drawn to scale, represents the motion of the ball.

3.1 Define the term free fall.
3.2 Use the graph and determine:
3.2.1 The time that the ball is in contact with the floor before the first bounce
3.2.2 The time it takes the ball to reach its maximum height after the first bounce
3.2.3 The speed at which the ball leaves the floor at the first bounce
3.2.4 Time \mathbf{t} indicated on the graph

THE PHOTO-ELECTRIC EFFECT: SIMULATION

Albert Einstein received the Nobel Prize in Physics in 1921 for the photoelectric effect. He showed that light of sufficiently high energy could actually cause electrons to be emitted from a metal plate (like zinc) according to the equation:

$$
\mathrm{E}_{\mathrm{k}(\text { max })}=\mathrm{hf}-\mathrm{W}_{0} \quad \text { OR } \quad \mathrm{E}_{\mathrm{k}(\text { max })}=\mathrm{h}\left(f-f_{0}\right)
$$

- $\mathrm{E}_{\mathrm{k}(\max)}=$ Max.Kinetic energy of electrons in $\mathrm{J} \bullet \mathrm{h}=$ Planck's Constant $=6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$ - $f=$ Frequency of incident light in Hz - $\mathrm{W}_{0}=$ Work function of the metal in J
- $f_{\mathrm{o}}=$ Threshold frequency of the metal, where $\mathrm{W}_{0}=\mathrm{h} f_{\mathrm{o}}$

\square Current vs battery voltage
\square Current vs light intensity
\checkmark Electron energy vs light frequenc

With red light (637 nm): $f=0.47 \times 10^{15} \mathrm{~Hz}$ $f<f_{0}$ for Zn $\left(0.9 \times 10^{15} \mathrm{~Hz}\right)$ So $\mathrm{NO} \mathrm{e}^{-}$emitted

Experimental Parameters

Material	Wavelength	Intensity
Zinc	202 nm	90%

Graphs $f=1.50 \times 10^{15} \mathrm{~Hz}$
\square Current vs battery voltage
\square Current vs light intensity
\checkmark Electron energy vs light frequencs

With UV light (202 nm): $f=1.50 \times 10^{15} \mathrm{~Hz}$ $f>f_{0}$ for Zn $\left(0.9 \times 10^{15} \mathrm{~Hz}\right)$
So e- ARE emitted

